Evaluation of the accuracy of a computer-aided diagnosis (CAD) system in breast ultrasound according to the radiologist's experience.

نویسندگان

  • Marie-Laure Chabi
  • Isabelle Borget
  • Rosario Ardiles
  • Ghassen Aboud
  • Samia Boussouar
  • Vanessa Vilar
  • Clarisse Dromain
  • Corinne Balleyguier
چکیده

RATIONALE AND OBJECTIVES The aim of this study was to evaluate the performance of a computer-aided diagnosis (CAD) system for breast ultrasound to improve the characterization of breast lesions detected on ultrasound by junior and senior radiologists. MATERIALS AND METHODS One hundred sixty ultrasound breast lesions were randomly reviewed blindly by four radiologists with different levels of expertise (from 20 years [radiologist A] to 4 months [radiologist D]), with and without the help of an ultrasound CAD system (B-CAD version 2). All lesions had been biopsied. Sensitivity and specificity with and without CAD were calculated for each radiologist for the following evaluation criteria: Breast Imaging Reporting and Data System category and the final diagnosis (benign or malignant). Intrinsic sensitivity, specificity, and predictive values of CAD alone were also calculated. RESULTS CAD detected all cancers, and its use increased radiologists' sensitivity scores when this was possible (with vs without CAD: radiologist A, 99% vs 99%; radiologist B, 96% vs 87%; radiologist C, 95% vs 88%; radiologist D, 91% vs 88%). Seven additional cancers were diagnosed. However, the low specificity of CAD (48%) decreased the specificity of radiologists, especially of the more experienced among them (with vs without CAD: radiologist A, 46% vs 70%; radiologist B, 58% vs 80%; radiologist C, 57% vs 69%; radiologist D, 71% vs 71%). CONCLUSIONS CAD for breast ultrasound appears to be a useful tool for improving the diagnosis of malignant lesions for junior radiologists. Nevertheless, its low specificity must be taken into account to limit biopsies of benign lesions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A CAD System Framework for the Automatic Diagnosis and Annotation of Histological and Bone Marrow Images

Due to ever increasing of medical images data in the world’s medical centers and recent developments in hardware and technology of medical imaging, necessity of medical data software analysis is needed. Equipping medical science with intelligent tools in diagnosis and treatment of illnesses has resulted in reduction of physicians’ errors and physical and financial damages. In this article we pr...

متن کامل

A Hierarchical Classification Method for Breast Tumor Detection

Introduction Breast cancer is the second cause of mortality among women. Early detection of it can enhance the chance of survival. Screening systems such as mammography cannot perfectly differentiate between patients and healthy individuals. Computer-aided diagnosis can help physicians make a more accurate diagnosis. Materials and Methods Regarding the importance of separating normal and abnorm...

متن کامل

A review of neural network detection methods for breast cancer: review article

Breast cancer is the most common cancer among women and the earlier it is diagnosed, the easier it is to treat. The most common way to diagnose breast cancer is mammography. Mammography is a simple chest x-ray and a tool for early detection of non-palpable breast cancers and tumors. However, due to some limitations of this method such as low sensitivity especially in dense breasts, other method...

متن کامل

Classifications and Properties of Materials for Chairside Computer-Aided Design/Computer-Aided Manufacturing Dentistry: A Review

Background and Aim: Chairside computer-aided design/computer-aided manufacturing (CAD/CAM) systems have become considerably more accurate, reliable, efficient, fast, and prevalent since 1985 when CEREC was introduced. The inceptive restorative material option for chairside CAD/CAM restorations was limited to ceramic blocks. Today, restorative material options have been multiplied and include me...

متن کامل

Breast abnormalities segmentation using the wavelet transform coefficients aggregation

Introduction: Breast cancer is the most common cancer among women in the world. The automatic detection of masses in digital mammograms is a challenging task and a major step in the development of breast cancer CAD systems. In this study, we introduce a new method for automatic detection of suspicious mass candidate (SMC) regions in a mammogram. Methods: Mammography is widely used for the early...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Academic radiology

دوره 19 3  شماره 

صفحات  -

تاریخ انتشار 2012